Niche Partitioning Among Arbuscular Mycorrhizal Fungi and Consequences for Host Plant Performance
نویسندگان
چکیده
We understand little about the factors that determine and maintain local species diversity of arbuscular mycorrhizal fungi (AMF), the reasons why a single plant has multiple AMF partners, and how that diversity influences host plant performance. The extent to which co-occurring AMF species occupy different niche space, based on their ability to tolerate different soil conditions or differentially promote host plant growth in those differing conditions, offers possible explanations for the maintenance of diversity. AMF community composition was examined in relation to soil variability in a naturally metalliferous serpentine grassland and along a Cu, Cd, Pb, and Zn soil contamination gradient. Both field surveys demonstrated that AMF community composition is strongly influenced by soil factors and provide evidence that local diversity of AMF communities is at least partially maintained by environmental niche partitioning among fungal species. Because there is some evidence that AMF species can be non-additive in their effects on plant growth, the appropriate measure of AMF function may be how much plant growth is affected when that particular AMF species is deleted from the community. Greenhouse experiments using this deletion approach, and the traditional approach of evaluating host plant growth with a single AMF species, were performed. The experiments involved two grass species: Andropogon gerardii and Sorhastrum nutans and a subset of their natural AMF community grown in soils differing in nitrogen, phosphorus, and nickel, which is naturally high in the plants' native serpentine soils. This deletion method revealed that functional redundancy, with regards to host plant growth promotion, was the most common consequence of multiple species infecting one root. Functional complementarity and functional synergy, which may help explain why plants support multiple partners, were also demonstrated. Each of these interactions was found to be soil context dependent for most fungal species. These results demonstrate that the composition of the AMF community colonizing a host plant is important for plant performance and the consequences of colonization change with soil condition. They also suggest an explanation for why any one plant species supports several species of these fungi. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Biology First Advisor Brenda B. Casper This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/55
منابع مشابه
Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest
Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Non...
متن کاملCarbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent
• Root carbon (C) partitioning in two host plant species colonized by one of three arbuscular mycorrhizal (AM) fungal species was investigated. • Split-root systems of barley ( Hordeum vulgare ) and sugar maple ( Acer saccharum ) were inoculated on one side with one of three AM fungi. Leaves were labelled with 14 CO 2 3 wk after inoculation. Plants were harvested 24 h later and the root systems...
متن کاملCommunity Ecology
If arbuscular mycorrhizal fungi (AMF) promote phosphorus partitioning of plant hosts, they could provide one mechanism for the maintenance of plant community diversity. We investigated whether AMF improved the ability of old field perennials to grow on a range of phosphorus sources and whether AMF facilitated differential performance of plant species on different phosphorus sources (phosphorus ...
متن کاملInvestigation on Arbuscular Mycorrhizal Fungi (AMF) associated with Crocus sativus in Khorasan Razavi and Southern Khorasan provinces (north east of Iran)
Iran is the largest producer of saffron (Crocus sativus) in the world. More than 80% of higher plant species have a mutual relationship with mycorrhizal fungi, which enhances the plant growth and its productivity. With identification of native arbuscular mycorrhizal fungi and their application, it could be possible to expand saffron cultivated area and increase the performance of arable lands. ...
متن کاملBalancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes
Most organisms engage in beneficial interactions with other species; however, little is known regarding how individuals balance the competing demands of multiple mutualisms. Here we examine three-way interactions among a widespread grass, Schedonorus phoenix, a protective fungal endophyte aboveground, Neotyphodium coenophialum, and nutritional symbionts (arbuscular mycorrhizal fungi) belowgroun...
متن کامل